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We study the problem of determining a complete Riemannian man-
ifold with boundary from the Cauchy data of harmonic functions.
This problem arises in electrical impedance tomography, where one
tries to find an unknown conductivity inside a given body from
measurements done on the boundary of the body. Here, we show
that one can reconstruct a complete, real-analytic, Riemannian
manifold M with compact boundary from the set of Cauchy data,
given on a non-empty open subset Γ of the boundary, of all har-
monic functions with Dirichlet data supported in Γ, provided dim
M ≥ 3. We note that for this result we need no assumption on
the topology of the manifold other than connectedness, nor do we
need a priori knowledge of all of ∂M .

1. Introduction.

In this paper we study the inverse problem of determining a real-analytic
Riemannian manifold (M, g) from the knowledge of Cauchy data of harmonic
functions on Γ ⊂ ∂M . Here we assume that the manifold M is an n-
dimensional, connected, complete, real-analytic Riemannian manifold with
nonempty boundary ∂M . We assume n ≥ 3. We make a mild assumption on
the regularity of ∂M , namely that each point of ∂M be a regular boundary
point for the Dirichlet problem, in the sense of Wiener. We assume ∂M has
an open subset Γ ⊂ ∂M , and we assume more regularity on Γ. In fact we
assume Γ is a real analytic piece of boundary, and that the metric tensor of
M is real analytic up to Γ.

To formulate the problem precisely, let f ∈ C(∂M) with supp f ⊂ Γ.
Let u ∈ C(M ) ∩C∞(M) be the solution of Laplace-Beltrami equation

(1.1) ∆gu = 0 on M, u|∂M = f.
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When M is compact, this solution is unique. In the more general case
considered here, we specify the solution as follows. Let M j ⊂⊂M j+1 be an
exhaustion of M by compact manifoldsM j, with boundary ∂Mj = ∂M∪Σj,
and consider uj, solving

(1.2) ∆gu = 0 on Mj, uj|∂M = f, uj |Σj = 0.

Take f ≥ 0. Then uj is positive, monotonically increasing and bounded
from above by sup f , so the sequence converges to a unique limit, which we
denote PI f . The limit is seen to be independent of the choice of exhaustion
of M , and it extends uniquely to a linear map PI : C(∂M) → C(M ), which
is the solution operator we take for (1.1).

Now we describe the inverse problem. We assume that we know the
Cauchy data on Γ of all possible solutions of (1.1), for f supported on Γ.
Equivalently, we assume known the Dirichlet-to-Neumann map

(1.3) Λg,Γ : f �→ ∂ν PI f |Γ

where ∂ν is the exterior normal derivative of u and f ∈ C∞
0 (Γ). In this paper

we address the question: Is it possible to determine (M, g) by knowing a non-
empty open subset of the boundary Γ ⊂ ∂M as a differentiable manifold and
the boundary operator Λg,Γ? We show that this is the case if (M, g) is real-
analytic up to Γ in dimension n ≥ 3. See Theorem 1.1 below for a precise
statement.

This problem arises in Electrical Impedance Tomography (EIT). The
question in EIT is whether one can determine the (anisotropic) electrical
conductivity of a medium Ω in Euclidean space by making voltage and cur-
rent measurements at the boundary of the medium. Calderón proposed this
problem [C] motivated by geophysical prospection. The electrical conduc-
tivity in an open subset Ω of Rn is represented by a positive definite matrix
γ = (γij). The Dirichlet-to-Neumann map is the voltage to current map,
which maps a voltage potential at the boundary of the medium to the in-
duced current flux at the boundary of the medium. The reason why the
Riemannian manifolds appear naturally in the study of EIT (see [LeU]) is
that in dimension n ≥ 3 the EIT problem is equivalent to the problem of
determining a Riemannian metric g from Λg with

(1.4) gij = ( det γkl)1/(n−2)(γij)−1.

Let us denote the closure of Ω by Ω. Then, if ψ : Ω → Ω is a diffeomor-
phism which is the identity at the boundary, Λψ∗g = Λg. Thus, the electrical
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boundary measurements for the conductivities corresponding to metrics g
and ψ∗g are identical. This means that one cannot reconstruct uniquely the
conductivity from boundary measurements. The natural conjecture is that
this diffeomorphism is the only obstruction to unique identifiability of the
Riemannian metric (see Conjecture A in [LeU]).

Because of these observations, the EIT-problem can be studied in two
parts. The first one is to determine the abstract manifold structure which
corresponds to the conductivity. The second is to choose an appropriate
embedding of the abstract manifold structure to the Euclidean domain Ω.
We note that the second step is not unique, but in many cases one may have
complementary information which can be used to make the choice of the
embedding unique.

For “isotropic” metrics on Rn (i.e., gij = α(x)δij with δij the Kronecker
delta and α a positive function) the conjecture in dimension n ≥ 3, is that
the metric can be identified uniquely from the Dirichlet-to-Neumann map.
This was proved for smooth isotropic metrics gij in Ω ⊂ Rn, n ≥ 3 in [SU]
and for C3/2 isotropic metrics in [PPU].

In the anisotropic case in dimension n ≥ 3 Lee and Uhlmann proved in
[LeU] that the conjecture is valid for simply connected real-analytic Rieman-
nian manifolds with boundary that are in addition geodesically convex.

In the two-dimensional case, the EIT problem for domains in Euclidean
space was solved by Adrian Nachman in [N] for isotropic C2-conductivities
on Ω ⊂ R2. This was extended to Lipschitz conductivities in [BU]. The
problem for anisotropic conductivities in Ω ⊂ R2 can be reduced to the case
of isotropic ones by using an analog of isothermal coordinates as observed
in [S].

In [LaU] the inverse problem is studied for a compact Riemannian man-
ifold, assumed to be real-analytic in the case n ≥ 3 and C∞-smooth in the
two dimensional case. There it is shown that the Dirichlet-to-Neumann map,
measured only on an open subset of the boundary, determines the isometry
class of the manifold uniquely in dimensions n ≥ 3 and the conformal struc-
ture in dimension n = 2.

Here we extend the results of [LaU] in several respects. In particular
we relax the hypothesis that M be compact to a completeness hypothesis,
though we continue to assume ∂M is compact. Also we allow ∂M to be
fairly rough away from Γ. We also have produced a different approach to
the inverse problem, avoiding the use of sheaves. As in [LaU] the Green
functions play a central role, but the role here lies in providing an infinite
dimensional embedding of M that reveals its geometry. The following is our
main result.
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Theorem 1.1. Let M1 and M2 be complete, connected, real-analytic Rie-
mannian manifolds, with boundary. Assume the manifolds Mj have dimen-

sion n ≥ 3. Assume the boundaries ∂Mj are compact and all boundary
points are regular, in the sense of Wiener.

Furthermore, assume that ∂M1 and ∂M2 contain a non-empty open set
Γ1 = Γ2 = Γ, on which each boundary is real analytic, with the metric

tensors analytic up to Γj .
Finally, assume the Dirichlet-to-Neumann maps ΛΓ,g1 and ΛΓ,g2 coincide.

Then M1 and M2 are isometric.

Strictly speaking in the statement above we mean by the set Γ the sets
Γ1 ⊂ ∂M1 and Γ2 ⊂ ∂M2, which are identified by a diffeomorphism.

We outline the structure of the rest of this paper. In section 2 we extend
the manifolds Mj to larger manifolds M̃j and we show that the Green func-
tions are determined on an open subset of M̃j\Mj if we know the Dirichlet-to-
Neumann map on Γ. In section 3 we show that the Green functions provide
embeddings of M̃j into a Sobolev space. These embeddings will provide the
appropriate isometry of the two manifolds if the Dirichlet-to-Neumann maps
are the same on Γ. In section 4 we give some complementary results and
examples, involving complete manifolds without boundary and noncompact,
complete Riemann surfaces with boundary.

2. Construction of the metric on and near Γ.

Near Γ we use boundary normal coordinates (s, h) where s ∈ Γ is the point
nearest to x and h = dist(x, s). Let ξ = ξ(s) be local coordinates of Γ near
a given boundary point s0 ∈ Γ. Thus near s0 we have in M coordinates
(ξ, h) ∈ Rn−1 × R+. In these coordinates we represent the metric by the
tensor gij(ξ, h), i, j = 1, . . . , n.

In [LeU] it is shown for a compact Riemannian manifold of the dimension
n ≥ 3 that Λg,Γ determines all the normal derivatives ∂khgij(ξ, 0), k ≥ 0 of
the metric tensor at Γ. This result is based on the local fact that when
Λg,Γ is considered as a pseudodifferential operator, its symbol determines
the derivatives of the metric in boundary normal coordinates. Because of
the local nature of this construction, this result is valid also for non-compact
manifolds.

Let x0 ∈ Γ and consider boundary normal coordinates with a coordinate
function φ : V → {z ∈ Rn : zn ≥ 0}, φ(x0) = 0 in a neighborhood V ⊂ M
of x0. Then the metric tensor gij in these coordinates is a real-analytic
function. Since the Taylor series of gij converge in some small ball B(0, ρ),
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we can consider M as a subset of a larger real-analytic manifold M̃ which
has x0 as an interior point. For instance the manifold M̃ can be obtained
by taking the disjoint union of M and the ball B(0, ρ) with metric gij, and
identifying the points in {z ∈ B(0, ρ) : zn ≥ 0} with points of M . We set
O = B(0, ρ) ⊂ M̃ and U = O \M .

Since the partial derivatives of the metric gij in boundary normal coor-
dinates near x0 are determined, we have determined the metric gij uniquely
in O.

∂M

Γ

M

∂U

Figure 1: The complete manifold M , the set Γ ⊂ ∂M and the extension of
the manifold over Γ.

By [LT] there exists a minimal non-negative Green’s function of M̃ , sat-
isfying

∆gG(· , y) = −δy in M̃,(2.1)
G(· , y)|

∂M̃
= 0.

By [LT], the minimal non-negative Green function can be obtained as the
limit

G(· , y) = lim
j→∞

Gj(· , y)(2.2)

where Gj(x, y) are the Dirichlet Green functions of an exhaustion M̃j of
M̃ , such as described in the introduction. As shown in [LT], as long as
M̃ is complete with nonempty compact boundary, the increasing sequence
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Gj(·, y) has a uniform upper bound on M̃ \{y}. Given this, standard interior
regularity estimates imply that

lim
j→∞

||G(· , · )−Gj(· , · )||Cm(B×B) = 0(2.3)

for any compact B ⊂ M̃ int and m ≥ 0. It holds with m = 0 for any compact
B ⊂ M̃ .

We recall some properties of the Green function that we will need later.
It is known that the Green function G(x, y) is a real-analytic function of x
when x �∈ {y} ∪ ∂M̃ (see, e.g., [H]). Moreover, when x is near to a given y
it has the asymptotics (see [T])

G(x, y) = cndM̃(y, x)2−n + O(d
M̃

(y, x)3−n)(2.4)

where the constants cn �= 0 depend only on n and d
M̃

is the distance in M̃ .
When n = 3, the remainder might also include a log term.

Let us next consider two manifolds M1 and M2 for which we have identi-
fied Γ1 = Γ2 = Γ and Λ1

g1,Γ
= Λ1

g2,Γ
. Using the previous construction of the

set U and the metric tensor on U , which is the same for both manifolds, we
can attach this set and the metric on it to both manifolds, i.e.,

M̃1 = M1 ∪ U, M̃2 = M2 ∪ U.

Now we consider the minimal non-negative Green functions of M̃j, sat-
isfying

∆jGj(· , y) = −δy in M̃j,(2.5)
Gj(· , y)|∂M̃j

= 0,

where ∆j denotes the Laplace-Beltrami operator on (M̃j, gj).

Lemma 2.1. The Green functions Gj(x, y) satisfy

G1(x, y) = G2(x, y), (x, y) ∈ U × U.

Proof. Pick y ∈ U , and define V0 ∈ C(∂M2) by

(2.6) V0(x) = G1(x, y), x ∈ Γ ∩O; V0(x) = 0, x ∈ ∂M2 \ O.

Now let V be the minimal non-negative solution on M2 to

∆2V = 0 on M2, V = V0 on ∂M2.
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The hypothesis that ΛΓ,g1 = ΛΓ,g2 implies

∇xV (x) = ∇xG1(x, y), x ∈ Γ,

and hence, by unique continuation, V continues analytically to Ṽ ∈ C∞(M̃2\
{y}), with Ṽ (x) = G1(x, y) for x ∈ U \ {y}. This satisfies

∆2Ṽ = −δy on M̃2, Ṽ |
∂M̃2

= 0.

We claim that Ṽ (x) = G2(x, y) for x ∈ M̃2 \ {y}. This is obvious in case M̃2

has compact closure. Under the more general hypothesis of completeness
that we have made, we need to argue a little more.

What it clear from the analysis done so far is that 0 ≤ G2(x, y) ≤ Ṽ (x).
Restricting to x ∈ Γ, we have 0 ≤ G2(x, y) ≤ G1(x, y), for x ∈ Γ. Now we
can switch the roles of M̃1 and M̃2, and deduce that

G1(x, y) = G2(x, y), for y ∈ U, x ∈ Γ.

Hence, taking W (x) = G1(x, y)−G2(x, y) for x ∈ U , we have

∆2W = 0 on U, W |∂U = 0,

so W = 0 on U , which proves Lemma 2.1. �

3. Embedding of the manifold into a Sobolev space.

We will prove Theorem 1.1 via certain embeddings of M̃j into a Sobolev
space, defined by the Green functions Gj. We introduce the maps

Gj : M̃j −→ Hs(U), (any s < 2 − n/2),(3.1)

defined by

Gj(x)(y) = Gj(x, y), x ∈ M̃j, y ∈ U.(3.2)

Since δx ∈ Hs−2(U) depends continuously on x, we conclude that Gj(x) ∈
Hs(U) depends continuously on x. Similarly, we have for s < 1 − n/2 that
the maps Gj, j = 1, 2 are C1. In the following we assume that s < 1 − n/2.
Note that the derivative of Gj

DGj(x) : TxM̃j −→ Hs(U)(3.3)
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is given by

DGj(x)v = vGj(x, ·) = vk
∂

∂xk
Gj(x, ·)|x,(3.4)

where v = vk(∂/∂xk) ∈ TxM̃ .
Furthermore, since Gj(x, y) are real-analytic functions of x in M̃j \ {y},

we see that the maps Gj are real analytic on Mj.

Lemma 3.1. The map DGj(x) is injective for each x ∈ M̃j .

Proof. Suppose that the map Gj(x) annihilates a nonzero v ∈ TxM̃j , then
vk(∂/∂xk)Gj(x, y) = 0 for all y ∈ U . This implies that vk(∂/∂xk)Gj(x, y) =
0 for all y ∈ M̃j \ {x} by real-analyticity of the Green functions. By con-
sidering paths x(t) for which x(0) = y and the functions Gj(x(t), y) along
them, we obtain a contradiction with the asymptotics (2.4). �

We use this result to show:

Lemma 3.2. The map Gj : M̃j → Hs(U) is an embedding.

Proof. It remains to show that x1 �= x2 in M̃j implies that Gj(x1) �= Gj(x2).
Assume this is not the case, then

Gj(x1, y) = Gj(x2, y)(3.5)

for all y ∈ U , hence, by analyticity, (3.5) holds for all y ∈ M̃j \ {x1, x2}. But
Gj(x1, ·) is singular only at y = x1 and Gj(x2, ·) is singular only at y = x2.
From this we conclude that x1 = x2. �

Our next goal is to establish the following result, which will imply The-
orem 1.1.

Theorem 3.3. Assume that G1 and G2 coincide in the set U . Then the

sets G1(M̃1) and G2(M̃2) are identical subsets of Hs(U). Moreover, the map

G2 ◦ G−1
1 : M̃1 → M̃2 is an isometry.

The proof of Theorem 3.3 occupies the remainder of this section.
First we show that G1(M̃1) ⊂ G2(M̃2). Let

N (ε0) = {x ∈ M̃1 : d
M̃1

(x, ∂M̃1) ≤ ε0},(3.6)

C(ε0) = {x ∈ M̃1 : d
M̃1

(x, ∂M̃1) > ε0}
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where ε0 > 0 is small enough so that C(ε0) is connected. Let, x0 ∈ U∩C(ε0)
and B1 ⊂ C(ε0) be the largest connected open set containing x0 such that
G1(x) ∈ G2(M̃2) for x ∈ B1. Therefore, we can define the map

J = G−1
2 G1 : B1 → M̃2.

Let D1 ⊂ B1 be the largest connected open set containing x0 for which J is
a local isometry, that is, g1 = J∗g2. Finally, let x1 be the closest point of
M̃1 \ (N (ε0) ∪D1) to x0. Clearly we have that x1 ∈ ∂D1.

Lemma 3.4. Let x1 ∈ ∂D1 be the closest point in M̃1 \ (N (ε0)∪D1) to x0.

Then there exists x2 ∈ M̃ int
2 such that G2(x2) = G1(x1). Moreover, there is

a sequence pk ∈ D1 such that

lim
k→∞

pk = x1, lim
k→∞

J(pk) = x2.(3.7)

Proof. We know that there exist pk ∈ D1, qk ∈ M̃2 such that pk → x1 and
G2(qk) = G1(pk). If some sequence {qk} has a limit point x2 in M̃ int

2 , then
we are done by the continuity of G1 and G2. If there are no limit points, then
we have that for all sequences {qk} either

d
M̃2

(qk, x0) −→ ∞,(3.8)

or

qk −→ q0 ∈ ∂M̃2.(3.9)

First we consider the case (3.8).
If x1 �∈ ∂N (ε0), let ξ be the direction of the shortest curve from x1 to

x0 in M̃1. Since D1 is open and connected and thus path-connected, it is
easy to see that there is a path γ([0, l]) from x1 to x0, γ ′(0) = ξ such that
γ(]0, l])⊂ D1.

On the other hand, if x1 ∈ ∂N (ε0), let η ∈ Tx1M̃1 be the direction of the
shortest curve from x1 to x0 in M̃1 and ω ∈ Tx1M̃1 be the direction of the
shortest curve from x1 to the boundary M̃1. Then the directions η and ω
cannot be the same. Therefore there is ξ ∈ Tx1M̃1 such that 〈ξ, ω〉 < 0 and
〈ξ, η〉 > 0. Since x1 is a nearest point of M̃1 \ (N (ε0) ∪ D1) to x0, we see
that again that there is a path γ([0, l]) from x1 to x0, γ ′(0) = ξ such that
γ(]0, l])⊂ D1.

Since the map J is isometry in D1, the length of the paths γ and J(γ) is
the same. Thus, for the sequence pk = γ(l− 1/k) ⊂ D1 and qk = J(pk) the
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distance d
M̃2

(qk, x0) ≤ length(γ([0, l])) is uniformly bounded. Thus there is
a sequence for which (3.8) is not valid. Let us consider this sequence. If
the condition (3.9) is valid, G2(qk, y) → G2(q0, y) = 0 in Hs(U) (given q0
a regular boundary point), which yields that G2(qk) → 0. This would give
G1(pk) → 0, and hence

G1(x1) = 0.

Therefore
G1(x1, y) = 0

for all y ∈ U , and by unique continuation G1(x1, y) = 0 for all y �= x1.
Again, by using the asymptotics of the Green functions near y = x1, we
obtain a contradiction, which shows that the condition (3.9) is not valid.

Thus the limit point x2 ∈ M̃ int
2 exists and the limit (3.7) is valid. �

By the previous considerations, the Green functions have the following
property:

Lemma 3.5. For each nonempty open set Ω ⊂ U , the maps

GΩ
j : M̃j −→ Hs(Ω) (s < 1 − n/2),(3.10)

given by composing (3.1)–(3.2) with the operation of restriction to Ω, are

embedding. These maps are real-analytic on M̃j \ Ω.

Note that, given xj ∈ M̃j, we have

G1(x1) = G2(x2) ⇐⇒ GΩ
1 (x1) = GΩ

2 (x2).(3.11)

Now let us get back to x1 ∈ ∂D1 ∩ M̃ int
1 which is a closest point of

M̃1 \ (N (ε0) ∪D1) to x0. We have x2 ∈ M̃ int
2 with G2(x2) = G1(x1), hence

GΩ
2 (x2) = GΩ

1 (x1) = u ∈ Hs(Ω).(3.12)

Pick Ω ⊂ U disjoint from x1 (in M̃1) and from x2 (in M̃2). Then GΩ
j is an

analytic embedding in a neighborhood of xj . Let us consider the image of
the map GΩ

j , denoted by R(GΩ
j ), in Hs(Ω). We show next that their tangent

spaces coincide at the point u, that is,

TuR(GΩ
1 ) = TuR(GΩ

2 ) ⊂ Hs(Ω).(3.13)

Indeed, let v = (GΩ
1 )(q) where q is an interior point of D1, and let p = J(q) ∈

M̃2 be the point for which GΩ
2 (p) = v. By assumption we know that GΩ

1 and
GΩ

2 ◦J coincide in D1, and hence their differentials coincide, too. By previous
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considerations, we know that there is a sequence pk ∈ D1 such that pk → x1

and qk = J(pk) → x2. Denote vk = GΩ
1 (pk). Then

Tvk
R(GΩ

1 ) = DGΩ
1 (Tpk

M̃1) = DGΩ
2 (TqkM̃2) = Tvk

R(GΩ
2 ).

Since the differential DGΩ
1 and DGΩ

2 are continuous on M̃1 and M̃2, we
conclude that

DGΩ
1 (Tx1M̃1) = DGΩ

2 (Tx2M̃2).

Hence there is a finite dimensional space

V = TuR(GΩ
1 ) = TuR(GΩ

2 ) ⊂ Hs(Ω).(3.14)

Let L denote a linear subspace orthogonal to V in the inner product of
Hs(Ω). Now, let

P : Hs(Ω) → V
be the orthogonal projection to the space V ⊂ Hs(Ω). Consider the map

PGΩ
j : M̃j → V , x �→ P (Gj(x, · )).

The derivative of PGΩ
j at xj is the map P ◦ (DGΩ

1 ) which is surjective and
thus it is invertible. Hence it follows from the implicit function theorem,
that there is an open neighborhood A ⊂ V of Pu and a real-analytic map
Hj : A → M̃j such that

P (Gj(Hj(v), · )) = v.

Thus we can represent the graph of the function GΩ
j (M̃2) locally, near u, as

graphs of real-analytic functions

(3.15) Φj : A → L, Φj(v) = Gj(Hj(v), · ).
The real-analytic maps Φj coincide in an open subset PG1(D1) ⊂ A and
thus in the whole set A. This yields that x1 = H1(Pu) is an interior point
of the set B1. Moreover, the maps GΩ

1 and GΩ
2 ◦ J coincide near x1. Now

the map J has the representation J = H2 ◦H−1
1 and it is real analytic. We

have shown that the Green functions G1(x, y) and G2(J(x), J(y)) coincide
when x is near x1 and y ∈ Ω. Since J is real-analytic in D1 and near x1

and also the Green functions are real-analytic, it follows that G1(x, y) and
G2(J(x), J(y)) coincide when x and y are near to x1. By analyzing the
behavior of the Green functions when x is near y, we can construct the
metric tensor in local coordinates. Therefore the map J is an isometry near
x1 which is a contradiction with the assumption that x1 is the boundary
point of D1. Since ε0 in (3.6) can be chosen arbitrarily small, this proves
Theorem 3.3 and hence Theorem 1.1.
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4. Further results and examples.

Here we provide some complements to the results treated in the previous
sections. First we consider the case of complete, noncompact Riemannian
manifolds without boundary. In such a case there might not exist a positive
Green function, but nevertheless as shown in [LT] there is a symmetric Green
function (possibly non-unique). The following result can be regarded as an
extension of Theorem 3.3.

Theorem 4.1. Assume M1 and M2 are complete, connected Riemannian
manifolds without boundary, of dimension n ≥ 3, with real analytic metric

tensors, with Green functions G1 and G2. Assume there exists a nonempty
open U = U1 = U2 such that G1 = G2 on U × U . Then M1 and M2 are

isometric.

The proof of this result is basically a subset of the proof of Theorem 3.3.
The only difference between the results is that here we assume the boundaries
are empty, and we do not have the positivity of the Green functions to work
with. However, in the proof of Theorem 3.3 the one place this positivity
played a role was in an argument contradicting the possibility that qk →
q0 ∈ ∂M̃2. In the present case this phenomenon need not be dealt with, so
we have a proof of Proposition 4.1.

Now we bring back the boundary but drop down to dimension 2. As re-
called in the introduction, it was shown in [LaU] that ifM is a compact, con-
nected, 2-dimensional Riemannian manifold, with nonempty smooth bound-
ary, and Γ ⊂ ∂M a nonempty open set, then the Dirichlet-to-Neumann map
on Γ determines the conformal class of M . Here we give examples of com-
plete 2-dimensional manifolds M j with boundary that are not conformally
equivalent but that have equivalent Dirichlet-to-Neumann maps.

For the sake of simplicity, we start as follows. Let M be a compact 2-
dimensional Riemannian manifold, with smooth boundary. In fact, we will
even suppose the boundary ∂M is analytic and the metric analytic up to
∂M . Again for simplicity, let us take Γ = ∂M . We have a uniquely defined
solution operator

PI : C(∂M) → C(M )

to the Dirichlet problem ∆gu = 0 on M , u|∂M = f , where g denotes the
given Riemannian metric tensor on M .

Now let K ⊂M be any compact subset of logarithmic capacity zero. On
M \K we can take a complete Riemannian metric tensor, conformally equiv-
alent to g, say h = ϕg, with positive ϕ ∈ C∞(M \K). We can even arrange



The Dirichlet-to-Neumann Map 219

that ϕ be real analytic on M \K. To get this, let M̃ be a neighborhood of
M . Then M̃ \K is conformally covered by the Poincaré disk. One can take
h0 = ψg to be the metric on M̃ \K induced by the Poincaré metric, then
restricted to M \K. Furthermore, we can find positive β, real analytic on
M , equal to 1/ψ on ∂M , e.g., β = PI(1/ψ), and then taking ϕ = βψ gives
a complete Riemannian metric tensor h = ϕg on M \K, real analytic, with
ϕ = 1 on ∂M .

Given this metric h = ϕg on M \K, we have the solution operator to
the Dirichlet problem

PIK : C(∂M) → C(M \K).

We claim that, as long asK has logarithmic capacity zero, for all f ∈ C(∂M),

(4.1) PIKf = (PIf)
∣∣
M\K .

In fact, it is clear that PIK f is bounded and continuous on M \ K. On
the other hand it is classical that K is a removable set of singularities for
bounded harmonic functions; cf. [Car]. This established (4.1). As long as
ϕ = 1 on ∂M , this implies the Dirichlet-to-Neumann map for M \K, with
metric h = ϕg, coincides with that for M .
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